Волокно оптическое одномодовое со смещенной длиной волны отсечки E2 (G654E)_125

Одномодовое оптическое волокно со смещенной длиной волны отсечки E2 (G654E) произведено из преформ, полученных методом осевого парофазного осаждения (VAD). Волокно, соответствует рекомендациям ITU-T G.654.E. Оптическое волокно со смещенной дисперсией и отсечкой, имеет очень малые потери (CSF), может использоваться в приложениях для цифровой передачи на большие расстояния, таких как наземные системы дальней связи и магистральные подводные кабели с оптическими усилителями. Является продукцией, произведенной в Российской Федерации, полностью удовлетворяющей требованиям Постановления Правительства РФ №719 от 17 июля 2015 г., Постановления Правительства РФ от

16.09.2016 г. №925 и при использовании в кабеле отечественного производства позволяет получать 15% преференцию при закупках госкомпаниями относительно импортных аналогов. Геометрические и оптические характеристики (затухание, длина волны отсечки, хроматическая дисперсия и т. д.) и механические характеристики продукта позволяют использовать волокно при проектировании морских и береговых оптических линий, а также в случае необходимости использования оптических волокон, обеспечивающих максимальную дальность передачи за счет использования больших уровней оптической мощности.

Геометрические характеристики

Отклонение от концентричности сердцевины по отношению к оболочке, мкм	≤ 0,80
Диаметр оболочки, мкм	125±0,7
Некруглость оболочки, %	≤ 2,0
Диаметр вторичного покрытия, мкм (неокр.)	242,0±5,0
Собственный изгиб волокна, радиус кривизны в м	≥ 4
Отклонение от концентричности внешнего покрытия по отношению к оболочке, мкм	≤ 12

Оптические характеристики

Максимальный коэффициент затухания, дБ/км

на 1550 нм	≤ 0,171	
на 1625 нм	≤ 0,194	
MISL на длине волны 1550 нм, дБ/км		
1550 нм	≤ 0,174	
MISL (Maximum Individual Segment Loss) – максимальный		
коэффициент затухания по всей длине катушки, измеренный		
методом «скользящего окна».		

Нелинейность затухания (PointDiscontinuity), дБ

на1550 нм)	≤ 0,03
_	

Диаметр модового поля*, мкм

на 1550 нм	11,5-12,8

^{*} Значение на начале и конце катушки

Асимметрия

(различие в коэффициентах затухания при измерении с внутреннего и внешнего концов катушки), дБ/км

с внутреннего и внешнего концов катушки), д	D/ KIVI
1550 нм	≤ 0,004
Длина волны отсечки в кабеле (λ_{cc}), нм	≤1530
Коэффициент хроматической дисперсии, пс/	(HM*KM)
на 1550 нм	≤ 23
Наклон дисперсионной характеристики в области нулевой дисперсии, пс/(нм²*км)	S _o ≤ 0,070
Поляризационная модовая дисперсия	FA ¹
Максимальная величина ПМД в волокне, пс/√км	≤ 0,1
ПМД протяженной линии,пс/√км	≤ 0,06

 $^{^{\}rm 1}$ ГОСТ Р МЭК 60793148 (Метод А, неподвижный анализатор)

Затухание при изгибе

Соответствует ITU-T G.654.Е не более 0,1 дБ на длине волны 1625 нм при изгибе 100 витков \varnothing 60мм

Механические характеристики

Натяжение при перемотке волокна, ГПа	≥ 0,69
(другое усилие натяжения - по запросу) %	>1%
Сила снятия покрытия, Н	
Пиковое значение	1 – 8,9
Среднее значение	1 – 5
Стойкость к коррозии в напряженном состоянии (Nd)	≥ 20

Параметры влияния окружающей среды

Прирост затухания (дБ/км) на длинах волн 1550 нм и 1625 нм

-60°C ~ +85°С температурный цикл	≤ 0.03
1 71 '	= 0,00
+23°С погружение в воду	≤ 0,03
+85°С температурное старение	≤ 0,03
+85°С/85% влажное тепло	≤ 0,03

Эксплуатационные характеристики

Эффективный показатель преломления

на 1550 нм	1,465
на 1625 нм	1,465

Поставляемые длины

25,2 км / 50,4 км	≥ 50%
4,2 км - 23,1 км (кратность 2,1 км)	≤ 50%
27.3 км - 48.3 км (кратность 2.1 км)	_ 30 /0

Спецификация является рекламной информацией. Конкретные параметры оптоволокна определяются договором и ТУ.

430034, г. Саранск, ул. Лодыгина, соор.13 Телефон: 8 (8342) 33-36-88, 33-36-89 E-mail: info@rusfiber.ru, sales@rusfiber.ru www.rusfiber.ru